首页> 外文OA文献 >Volume product of planar polar convex bodies --- lower estimates with stability
【2h】

Volume product of planar polar convex bodies --- lower estimates with stability

机译:平面极体凸体的体积积 - 低估计   稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Let $K \subset {\mathbb R}^2$ be an $o$-symmetric convex body, and $K^*$ itspolar body. Then we have $|K|\cdot |K^*| \ge 8$, with equality if and only if$K$ is a parallelogram. ($| \cdot |$ denotes volume). If $K \subset {\mathbbR}^2$ is a convex body, with $o \in {\text{int}}\,K$, then $|K|\cdot |K^*| \ge27/4$, with equality if and only if $K$ is a triangle and $o$ is its centroid.If $K \subset {\mathbb R}^2$ is a convex body, then we have $|K| \cdot|[(K-K)/2)]^* | \ge 6$, with equality if and only if $K$ is a triangle. Thesetheorems are due to Mahler and Reisner, Mahler and Meyer, and to Eggleston,respectively. We show an analogous theorem: if $K$ has $n$-fold rotationalsymmetry about $o$, then $|K|\cdot |K^*| \ge n^2 \sin ^2 ( \pi /n)$, withequality if and only if $K$ is a regular $n$-gon of centre $o$. We will alsogive stability variants of these four inequalities, both for the body, and forthe centre of polarity. For this we use the Banach-Mazur distance (fromparallelograms, or triangles), or its analogue with similar copies rather thanaffine transforms (from regular $n$-gons), respectively. The stability variantsare sharp, up to constant factors. We extend the inequality $|K|\cdot |K^*| \gen^2 \sin ^2 ( \pi /n)$ to bodies with $o \in {\text{int}}\,K$, which contain,and are contained in, two regular $n$-gons, the vertices of the contained$n$-gon being incident to the sides of the containing $n$-gon. Our key lemma isa stability estimate for the area product of two sectors of convex bodies polarto each other. To several of our statements we give several proofs; inparticular, we give a new proof for the theorem of Mahler-Reisner.
机译:令$ K \ subset {\ mathbb R} ^ 2 $是一个$ o $对称凸体,而$ K ^ * $是它的极体。然后我们有$ | K | \ cdot | K ^ * | \ ge 8 $,且仅当$ K $是平行四边形时才相等。 ($ | \ cdot | $表示交易量)。如果$ K \ subset {\ mathbbR} ^ 2 $是一个凸体,且$ o \ in {\ text {int}} \,K $,则$ | K | \ cdot | K ^ * | \ ge27 / 4 $,且仅当$ K $是三角形且$ o $是其质心时才相等。如果$ K \ subset {\ mathbb R} ^ 2 $是凸体,则我们有$ | K | \ cdot | [((K-K)/ 2)] ^ * | \ ge 6 $,且仅当$ K $为三角形时才相等。这些定理分别是由马勒和赖斯纳,马勒和迈尔以及埃格斯顿决定的。我们显示一个类似的定理:如果$ K $具有约$ o $的$ n $倍旋转对称性,则$ | K | \ cdot | K ^ * | \ ge n ^ 2 \ sin ^ 2(\ pi / n)$,当且仅当$ K $是中心$ o $的常规$ n $ -gon时,才相等。我们还将针对身体和极性中心给出这四个不等式的稳定性变量。为此,我们分别使用Banach-Mazur距离(来自平行四边形或三角形)或其类似副本(而不是仿射变换)(来自常规$ n $ -gon)。稳定性变型非常明显,直至恒定因子为止。我们扩展不等式$ | K | \ cdot | K ^ * | \ gen ^ 2 \ sin ^ 2(\ pi / n)$到具有$ o \ in {\ text {int}} \,K $的物体,其中包含两个常规的$ n $ -gon,包含的$ n $ -gon的顶点入射到包含的$ n $ -gon的侧面。我们的关键引理是对两个相互凸极的凸体扇区的面积乘积的稳定性估计。对于我们的一些陈述,我们提供了一些证明。特别是,我们为马勒-里斯纳定理提供了新的证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号